Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.04.01.486695

ABSTRACT

Omicron is the evolutionarily most distinct SARS-CoV-2 variant (VOC) to date and displays multiple amino acid alterations located in neutralizing antibody sites of the spike (S) protein. We report here that Omicron breakthrough infection in BNT162b2 vaccinated individuals results in strong neutralizing activity not only against Omicron, but also broadly against previous SARS-CoV-2 VOCs and against SARS-CoV-1. We found that Omicron breakthrough infection mediates a robust B cell recall response, and primarily expands preformed memory B cells that recognize epitopes shared broadly by different variants, rather than inducing new B cells against strictly Omicron-specific epitopes. Our data suggest that, despite imprinting of the immune response by previous vaccination, the preformed B cell memory pool has sufficient plasticity for being refocused and quantitatively remodeled by exposure to heterologous S protein, thus allowing effective neutralization of variants that evade a previously established neutralizing antibody response.


Subject(s)
Breakthrough Pain , Severe Acute Respiratory Syndrome
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.12.09.20245175

ABSTRACT

BNT162b2, a lipid nanoparticle (LNP) formulated nucleoside-modified messenger RNA (mRNA) encoding the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S) stabilized in the prefusion conformation, has demonstrated 95% efficacy to prevent coronavirus disease 2019 (COVID-19). Recently, we reported preliminary BNT162b2 safety and antibody response data from an ongoing placebo-controlled, observer-blinded phase 1/2 vaccine trial1. We present here antibody and T cell responses from a second, non-randomized open-label phase 1/2 trial in healthy adults, 19-55 years of age, after BNT162b2 prime/boost vaccination at 1 to 30 {micro}g dose levels. BNT162b2 elicited strong antibody responses, with S-binding IgG concentrations above those in a COVID-19 human convalescent sample (HCS) panel. Day 29 (7 days post-boost) SARS-CoV-2 serum 50% neutralising geometric mean titers were 0.3-fold (1 {micro}g) to 3.3-fold (30 {micro}g) those of the HCS panel. The BNT162b2-elicited sera neutralised pseudoviruses with diverse SARS-CoV-2 S variants. Concurrently, in most participants, S-specific CD8+ and T helper type 1 (TH1) CD4+ T cells had expanded, with a high fraction producing interferon-{gamma} (IFN{gamma}). Using peptide MHC multimers, the epitopes recognised by several BNT162b2-induced CD8+ T cells when presented on frequent MHC alleles were identified. CD8+ T cells were shown to be of the early-differentiated effector-memory phenotype, with single specificities reaching 0.01-3% of circulating CD8+ T cells. In summary, vaccination with BNT162b2 at well tolerated doses elicits a combined adaptive humoral and cellular immune response, which together may contribute to protection against COVID-19.


Subject(s)
Coronavirus Infections , Convalescence , COVID-19
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.17.20140533

ABSTRACT

An effective vaccine is needed to halt the spread of the SARS-CoV-2 pandemic. Recently, we reported safety, tolerability and antibody response data from an ongoing placebo-controlled, observer-blinded phase 1/2 COVID-19 vaccine trial with BNT162b1, a lipid nanoparticle (LNP) formulated nucleoside-modified messenger RNA encoding the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. Here we present antibody and T cell responses after BNT162b1 vaccination from a second, non-randomized open-label phase 1/2 trial in healthy adults, 18-55 years of age. Two doses of 1 to 50 g of BNT162b1 elicited robust CD4+ and CD8+ T cell responses and strong antibody responses, with RBD-binding IgG concentrations clearly above those in a COVID-19 convalescent human serum panel (HCS). Day 43 SARS-CoV-2 serum neutralising geometric mean titers were 0.7-fold (1 g) to 3.5-fold (50 g) those of HCS. Immune sera broadly neutralised pseudoviruses with diverse SARS-CoV-2 spike variants. Most participants had TH1 skewed T cell immune responses with RBD-specific CD8+ and CD4+ T cell expansion. Interferon (IFN){gamma} was produced by a high fraction of RBD-specific CD8+ and CD4+ T cells. The robust RBD-specific antibody, T-cell and favourable cytokine responses induced by the BNT162b1 mRNA vaccine suggest multiple beneficial mechanisms with potential to protect against COVID-19.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL